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K
Introduction

Banyan etworks [2] comprise a lar eas of networks that have been used
for interconnection in large-scale .multiprocessors and telephone switching
systems. VA Banyan network is a network in which there is a unique path
from each input to each output.' Regular variants of Banyan networks, such
as delta and butterfly networks, have been used in multiprocessors such as
the IBM RP3 [6] and the BBN Butterfly [7]. Analysis of the performance of
Banyan networks has typically focused on these regular variants.

Patel [5] presented a probabilistic analysis of the performance of delta
networks. His work assumed that all sources transmit with uniform probabil-
ity, and that all destinations are selected with uniform probability. Bhuyan
[1] has extended Patel's work to include analysis of the case where each pro-
cessor has a single favorite destination that is not the favorite destination
of any other processor. Kruskal and Snir [31 have extended Patel's work by
finding an asymptotic expression for the probability that a destination is
receiving for networks with large numbers of stages.

In what follows, we present a methodology for performance analysis of
general unbuffered Banyan networks. The analysis allows us to compute ex-
actly the probability of successful message transmission in a Banyan network
of arbitrary topology, under several assumptions:

1. The destination addresses for messages are unformly distributed over
the outputs of the network.

2. The messages presented at each input are independent of the mes-
sages presented at other inpu.s, and also of messages presented on any
previous cycle.

3. The network is fully synchronous, with all messages not dropped at
stage n proceeding simultaneously to stage n + 1 at each clock cycle.

Our methodology has two novel features: it does not assume that all
sources transmit with equal probability and thus allows analysis of networks or
where some inputs are more likely to be active than others; and it allows
analysis of Banyan networks of arbitrary topology.

Our work proceeds from the observation that all of the differing topolo- 1 []
gies for unqueued Banyan networks can be decomposed into combinations to-

'Or from each base to each ape, in the terminology of Goke and Lipovsky.
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of three basic operations: bundling, concentration, and switching. By de-
scribing the behavior of these primitive elements with a probabilistic model,
we are able to evaluate the performance of any such network.

We begin with a discussion of the use of probability mass functions to
describe network wiring, and then consider the effect of each of three basic
operations on these probability mass functions. Finally, we apply this model
in an analysis of two switching elements, the common 2h x 2

k crossbar and
the Transit RN1 switching element.

Modeling Message Traffic With Probability Mass Functions

A multi-stage network consists of a set of message sources, a cascaded set
of network switching elements, and a set of message destinations. Often the
set of source and destination nodes is identical.

The elements comprising a switching network are interconnected with
channels. Each channel consists of a wire or group of wires that are switched
as a single unit. A channel might, for example, consist of a single bidirec-
tional wire with serial encoding of messages, or a byte-wide data path with
an associated parity bit.

We associate with a channel a random variable I whose value is the num-
ber of messages, or the load, that the channel is carrying. The probability
mass function (PMF) of this random variable specifies for each non-negative
integer j the probability that the channel is carrying j messages. We call
this function the loading probability mass function (LPMF) for the channel.
If the random variable specifying the load for a channel is called 1, then we
denote the LPMF for the channel pi(Io).

For example, a single channel has a probability p of carrying a message
and a probability of I - p of being idle. Thus the LPMF for a single channel
is simply the PMF of a Bernoulli trial.

Our event space is the space of loading configurations for a partic,iar
network. That is, if we define a network as a set of message-carrying wires
connected to each other by the switching elements we shall define bel .w, then
the elementary events in our event space are instances of this netiWork with
some load specified for each channel in the network. Obviously the N + 1
possible values of I for a channel that can carry a maximum of N messages
partition the event space into N + 1 mutually exclusive sets of elementary
events - each set containing all the network loading corLgurations for which
the load on that channel is some given value.

In later sections, we will find it useful to associate with a probability
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mass function its unilateral Z-transform. We denote the Z-transform of a
PMF p(zo) by py(z).

Bundling

The first operation is the simplest. We call the grouping together of several
channels to form a single wider channel bundling. The single wider channel
that is a product of bundling we sometimes call a bundle. The loads on the
coDstituent channels in a bundle must be independent, as they will be in a
Banyan network with independent inputs. When we bundle two channels,
one of which can carry between 0 and n messages and the other of which can
carry between 0 and m messages, the resulting channel can carry between
0 and n + m messages. The loads of the channels being bundled are inde-
pendent random variables whose sum we are forming, so that the LPMF of
the resulting bundle will be the convolution of the LPMFs of the component
channels. If we denote the bundling of a and b as B [p.(ao) , p,(bo)], we have
simply

B -p(o &b) p.(( ) * p~o

S where * denotes convolution. In the Z-domain, then, bundling will only
require forming the product of the Z.transforms:

Z [B [P6(ao) , p(bo)II = p.T(z) • p (z)

Figure 1 depicts the result of bundling eight channels, each of which
carries a message with probability 1/2. The LPMF is clearly that of a bi-
nomial distribution, because the sum of independent identically distributed
Bernoulli random variables is a binomial random variable.

Concentration

Our second elementary operation on channels is called concentration. In
concentration, we take a bundle of M single channels and form from it a
bundle of N single channels. If N < M, and the input bundle is carrying
more than N messages, some messages will be lost.

The effect on the LPMF of the input bundle is simple. If N > M,
there is no effect on the LPMF. If N < M, the probability that more than
N messages can be carried on the output bundle is 0, but in cases where
messages are dropped, only enough will be dropped to bring the load to N.

3
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Figure 1: Loading probability mass function for an eight-channel bundle,
where each channel carries a message with probability 1/2.

Thus the effect of the operation on an LPMF p(lo) will be both to clip it
to 0 for 1o > N and to add to pr(N) the sum of pi(bo) for Io > N. Figure 2
shows the result of concentration on the LPMF of figure 1.

More explicitly, if the input LPMF is given by

M
Pz(lo) = ki6(to - i)

i=O

where 6(n) is the unit impulse function, the result of N-concentration of
p(bo), a bundle composed of M channels, to N channels, is given by

CM, [(IO1 _ t~l) (N- lo) + (E~ P1(11) 6(bo - N)

where u(n) is the unit step function.
If the Z-transform of p(lo) is p?(z), then we have

[CM.NV [pI(lo)]] = PT(z) - jIpi) "+( Z P()) ZN
11=N+1 It=N+1

4 0
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Figure 2: 6-concentration of the LPMF of figure 1.

The first two terms in the transform are the result of taking the Z-
transform of the truncated LPMF, and the last term adds in the Z-transform
of the increased final element of the LPMF. Combining the last two terms,
we have

M

Z [CM.N Wpr0A)I = p?(Z) + E ROOh (ZN _ Z11)
5t=N+i

Switching

The last operation we shall be using is switching. The switching operation
is performed on an input bundle of N channels and specifies the LPMFs for
two output bundles of N channels each. We designate the output bundles

bundle 0 and bundle 1. We specify for the modeled switch the probability
(1 - q) that the each message in the input bundle is switched to to channel

0; similarly, messages are switched to channel 1 with probability q.
We now consider the LPMFs for the two output bundles, given the LPMF

pl(lo) of the input bundle. Suppose the input bundle is carrying i messages.
What is the probability that j messages, where j < i, will be switched to
channel 1? It is the probability of j successes in i Bernoulli trials. If we call
the random variable specifying the load on the output bundle I., we have

5



for the conditional probability

P1.Itl~i) qj1- )-

We may now apply the theorem of total probability to find an expression
for pl. (j):

N

P.(j ) = E l( i) .1 (j1i)
i=-O

ij

where the summation's lower bound is changed in the second expression
because the probability that the output channel carries more messages than
the input channel is 0.

Thus if S specifies the probability of switching a message to a given

output bundle, and the input LPMF is given by pj(1o), then the LPMF for
the output bundle is given by N

S W )) S1 =S' -. (0 S)P-

This can be interpreted as meaning that the probability that I.o messages
appear on an output bundle is the probability that I., messages were on the
input bundle and all I., messages were switched to the given output bundle,
plus the sum of the probability that I.. + 1 messages were on the input
bundle and exactly I., of these were switched to the given output bundle,

and so on, up to the maximum possible load of the input bundle.
An example of the effect of switching may be seen in figure 3.
To evaluate the Z-transform of S [p(o), S, we first note that the ran-

dom variable describing the number of messages on an output bundle may

be treated as the sum of a random number of identically distributed random
variables. We can see this by imagining individually switching each channel
in the input bundle to one output bundle or the other, before considering
whether it is carrying a message.

Then there is one random variable for each channel in the input bundle;
call it b. b is 1 if the channel is switched to the output bundle being consid-
ered, and 0 if the channel is switched to the other output bundle. b's PMF

6@
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Figure 3: The effect of switching the LPMF of figure 1 with probability 0.5.

is then given by

for S the probability of switching to the given output bundle.
The random number of summands is the number of messag,!s that the

input bundle was actually carrying; thus its distribution is the LPMF of the
input bundle. To extend our earlier interpretation, we are saying here that
the load on a particular output bundle is the number of occupied channels
in the input bundle that were switched to that output bundle.

Now the Z-transform of an output channel's LPMF is given by the trans-
form of the sum of a random number of identically distributed random vari-
ables:

Z[S[p(/o),S] = pT (PT(z))

= P(1- S + Sz)

We note that, where the probability of switching to both bundles is equal,
the Z-transform for the LPMF resulting from repeated stages of switching
has a particularly simple form. If b is the random variable representing the
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number of channels switched to an output bundle, we have

p (z)=Z[6(bo) + 6(bo -1) z +
Pw=z2 2

We can now follow the rule given above, so that n levels of switching cause
repeated substitutions for z, and we have the recurrence relation

S(n) = S(n - 1) + I
2

S(O) = z

with solution

S(n) = z + 2 - 1

Thus, if Ii is the random variable for the load on the input bundle and
4n is the random variable for the load on an output bundle after n levels of
binary switching with uniform probability of switching to either channel, we
have

2n

Descriptions of Simple Switching Elements

We describe two simple switching elements, the 2
h x 2k crossbar and the

Transit RN1 switching element, by using combinations of our three prim-
itive operations: bundling, concentration, and switching. In depicting the
primitive operations schematically, we use the symbols shown in figure 4.

The 2 k x 2 k Crossbar

The common 21' x 2h crossbar network is formed by bundling the 2k inputs,
switching k times (once per bit of routing data), and concentrating the out-
puts with an 2k-input, one-output concentrator. We &Tpict the probabilistic
model of an eight-by-eight crossbar in figure 5.

For a 2k x 2h crossbar, we may find an output channel's LPMF as follows.
If we call the probability that an input channel is transmitting Q,, the LPMF
for an input channel is given by

h(Yo) = Qi6(yo - 1) + (1 - Qi) 6(yo)

with Z-transform

pT(Z) = Qi + (I - Q,)



k3 - -j+k k k . --
:kk j -> k )-

J-q

(a) (b) (C)

Figure 4: (a) The symbol for bundling two input bundles into one. (b)
The symbol for concentrating j channels to k channels. (c) The symbol for
switching with probability q to the top output channel, and 1 - q to the
bottom output channel

* >1

8 1

1 " 8

2 4 . 8

Figure 5: An eight-by-eight crossbar network.
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The LPMF for a bundle of 2k identical input channels has Z-transform

The result of k stages of switching with equal probability in each of two
directions is

P2 (Z) ( ( z+ 2k - )I

2kk

- ( Q ~ z + 2 k ~ 1 + 1 )

- 218h QL 2b -

We note that this Z-transform is trivially invertible, so that, setting
M = 2k and rearranging slightly, we have

PL (M) = (s) M ( (M) (Q -
E (M l6(Z. (M 1))

Now we may perform the M -- 1 concentration. Because this is a
concentration to one channel, we may save some w.rk by noting that we can
simply consider t ioading pro ability for zero messages from the LPMF
above; the concentration forces all other loading probabilities to that for one
message, which will necessarily be the complement of the loading probability
for zero messages. We have, for the loading probability for zero messages,

p..(0) _ M ( (M,) ( M

Note that the terms in the summation are nonzero only where I = A, so
this expression simplifies to

10



p.. (0) =K -1

The LPMF of an output channel is then given by

As the number of stages k in the crossbar increases, M = 2k becomes large
quickly, and pi(l) quickly approaches the limit

IimP1 (1) = lim, ( 1 2i- ( - -i

In our analysis, the probability of successful message transmission is
given by the ratio of the expected number of messages transmitted by all
the output channels to the expected number of messages on input channels.
In the case of a square crossbar network, this is simply pj(1)/Q. We plot
this value as a function of Qi, the input loading on the network, for an
eight-by-eight crossbar network in figure 6.

The Transit RN1 Switching Element

The R 1 switching element is a prototype for the switching element to be
used in the Transit interconnection network for massively parallel computers,
being built by the Transit Group at MIT's Artificial Intelligence Laboratory.
The RN1 switching element can be configured in one of two ways; the first is
as two four-by-four crossbars, and the second is as an eight-by-four crossbar
with a dilation of two, meaning that only four logical output directions are
available, but two messages can be carried in each. It is the second of these
configurations whose performance we analyze. We depict the element in
figure 7.

The derivation of the LPMF of a two-channel output bundle for the RN1
switching element follows. As above, if we call the probability that an input
channel is transmitting Qj, the LPMF for an input channel is given by

N(Yo) = Qi6(yo - 1) + (1 - Qi),6(yo)

ii0
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0:2 0.4 0,'6 018

0 . 9 .. .. .. . . .. . . .. . . ... . .. .. .. .. .. .... . . . .. . .. . .

0 .8 5 .. .... ... .. . ............. ........ ... .
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0 .7t.
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Figure 6: The probability of successful message transmission as a function of
Qj, the input loading on the network, for an eight-by-eight crossbar network.

8->2
.5

18 2

Figure 7: The RNl switching element, in the eight-by-four, dilation two
contfiguration.
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p

with Z-transform
Pr(Z) = QZ + (1 _ Q,)

The LPMF for a bundle of 8 identical input channels has Z-transform

pZ (Z) = ('(Z)) "

The result of two stages of switching with equal probability in each of two
directions is

( (- + )(- ))

0Again as in the case of the crossbar, we invert the transform

P2. ~ = qi)S ( =" (7) U~ - 1)L6, (81)

and then perform the concentration. In this case the concentration is to
two channels, so that we must consider probabilities for the two cases that
the output bundle carries zero messages or one message in order to use the
method we did before for deriving the concentrated LPMF.

For zero messages, the sum is zero except where I = 8, so that we have:

p*.(o) = (Q) -4)
S( )" (_ 1)

For one message, the sum is zero except where I = 7, so we have:

Pz.(0) ( 4 _ 1)=

= 2Q ,( I - )

130



After concentration, the probability for two messages must be the sum
of the probabilities for higher loads, so that the LPM:F for a two-channel
output bundle is given by

= (i--)6(o) + 2Q 1 S- )76(0- 1)

+ I1- I1 '-)(1 +L-)) b(1 - 2)

We form the probability of successful message transmission as the ratio
of the expectation of the number of messages on all output channels to
the expectation of the number of messages on all input channels. In this
analysis we have assumed uniformity and independence of input loading and
a uniform distribution of message destinations, so that the expectation of
the input loading is simply E,=1 Qj = 8Qj and that of the output loading
(if we recall that the random variable giving the number of messages on an
output bundle is 1) is

E[I]=4 1 (Q' 1- ' '+)+ "(1 - (I - "19,"+ (1 + "!Q)) 0

Thus the probability of successful message transmission is given by

Q, ( 7- /+ ,L)T / (I, + g
PSMT = Q

Qi,+ (Qi( + 1,-,L11 (1_ 1

Qi

We plot the probability of successful message transmission versus the
input loading in figure 8.

Analyzing the Performance of More Complex Networks

It may be difficult to simplify the expressions describing more complex net-
works built from arrays of simple switching elements like those we have
analyzed above. Indeed, Patel [5 and Kruskal and Snir [3 derive expres-
sions only for simple, regular networks; these are a' x b delta networks in

14
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Figure 8: Probability of successful message transmission plotted vs. input
loading for the Transit RMI switching element in its eight-by-four, dilation
two configuration.

the case of Patel's work, and square Banyan networks of arbitrary dilation
in the case of Kruskal and Snir's work.

The advantage of our approach is that such analyses are automated. One
specifies the topology of the network, forms the sequence of operators that
describes the loading probability mass function for an output bundle, and
evaluates it. This evaluation can be numeric or in the form of a parameter-
ized expression. The derivation of such an expression for a complex network
is aided by the use of a symbolic mathematics program like Macsyma or
Mathematica. We present a set of Mathematica functions that may be used
for such analysis in the appendix.

Future Work

The methodology described above, despite its advantages, does not yield
a completely satisfactory model of a Banyan network's performance. We
describe now some of the disadvantages of the methodology.

The probability of successful message transmission alone will not be a
faithful measure of performance in a network that is buffered. In the Transit
network, for example, although the individual switching elements themselves

15



do not contain buffers, messages are effectively buffered at the inputs to the
network. Thus it will be desirable to extend the methodology with queueing-
theoretic techniques to allow the creation of more faithful models. In future
work, we hope to do this in a fashion that continues to allow analyses of
Banyan networks of arbitrary topology.

While the methodology does allow analysis of networks where one or
more sources are likely to be more active than others, it does not easily lend
itself to an analysis of networks where one or more sinks are more likely to
be the destination of messages than others. In fact, the general case of this
problem, where messages entering a Banyan network of arbitrary topology
have an arbitrary distribution of destination addresses, remains unsolved to
date.

The analysis technique described is appropriate only to Banyan net-
works. While these constitute a large class, some of the fault-tolerance
features of Banyan networks used in practice may include redundant paths
between sources and sinks. It will be necessary to extend the technique to
encompass replications and dilations of Banyan networks; in more compli-
cated cases, it may be necessary to supplement it with a different approach,
or abandon it altogether.

Another disadvantage of the methodology we have described lies in its
tacit assumption that the network modeled is completely synchronous. This
assumption is not always justified; for example, in the case of a circuit-
switched network like the Transit network, successful message transmission
creates a circuit which is held open until a reply is sent. The circuit is held for
a number of cycles, during which other messages may be transmitted from
the inputs and be blocked because paths at succeeding stages are already in
use.

A related disadvantage of our methodology lies in its assumption that
the path being built by a message being transmitted in a circuit-switched
network immediately disappears, freeing all associated resources, if the mes-
sage is blocked, whereas in reality it will take a number of cycles for these
resources to be freed. Nussbaum and his colleagues have found this to be a
significant factor in discrepancies between Patel's model and their simula-
tion, as described in in [4].

We hope to address some of these disadvantages in ongoing work. The
ideal result would be a technique for automatically generating an accurate
model of the performance of a multistage interconnection network given only
a description of the network topology.
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Appendix: Mathematica Functions for Banyan Network Anal-
ysis

concentrate: usage =

"concentrateNx, n] concentrates the LPNF x to n channels."

concentrate[x_, n-] :-
(' get distribution for 0 through n-1 channels, and add

as last element the sum of the rest of the channels. s)
Append[Take[x, n], Apply[Plus, Drop x, n3J)

discreteconvolution: :usage a
"discreteconvolution[x, y] treats x and y as O-based
vectors and returns their discrete convolution."

discreteconvolution[x_, y- :a
Block[{xlgth, ylgth, lgth},

xlgth - Length[x];
ylgth = LengthEy];
Igth = xlgth + ylgth - 1;
(. in summation, portions of sequence with indices

out of range for sequences must be treated as
0. *)

Table [SumCIf [k < I I I k > xlgth [[
(n-k+l) < 1 11 (n-k+l) > ylgth,
0,
C. because of the 0->1 index

translation, we increase the y-index
to shift the result sequence back
down to begin at 1. *)

xC[k]] y[n-k+1)],
{k. xlgth}],

{n. lth}] I

bundle: :usage a
"bundleCx, yJ forms the LPNF that results from bundling
two input bundles with LPNFs x and y."

bundlex., y-1 :=
discreteconvolution [x, y]
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switch: :usage =
"switch[x, p] returns the LPNF of an output bundle to
which x is switched with probability p."

switch[x_, p-1 :=

Block [{lgth},

lgth = Length[x];
Table[Sumx[[i+1]] Binomial[i, n] p-n (1-p)-(i-n),

{i, n, lgth-1}J,

{n. 0, lgh-1}J)
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